Asnful n Nyuṭun

Zɣ testwiki
Aller à la navigation Aller à la recherche

Talɣa:Amgrad icqqan

Tannayt f mamnk asa itgga usɣlu n kra n usnful.

Tga tanfalit n usnful n Nyuṭun yat tanfalit tusnakt iskr tt umusnak amqqran Isḥaq Nyuṭun[1] fad ad yaf usbuɣlu n kraygat taẓḍurt n kra n usnful. Tṭṭaf ismawn yaḍna zun d tanfalit n usnfultanfalit n Nyuṭun.

Mad tettini

Iɣ gan x d y sin ifrdisn n kra n uzbg (s umdya sin imḍanen ilawn nɣ ismlaln, sin igtfuln, sin isiruwn imkkuẓn nna dar illa nafs tiddi, atg.) nna ɣ tlla tasunflt[2] (ad t-igan mas-d xy=yx — s umdya i isiruwn : y iga-tt isiruw n tulut) s ɣikk ad, i kraygat n amḍan ummid agaman, nṭṭaf :

(x+y)n=k=0n(nk)xkynk=k=0n(nk)xnkyk,

Ma ɣ imḍann

(nk)=n!k!(nk)!

(kra n twal ar tt nttara ula Cnk) gan imuskirn isnfal, « ! » ɛnan sis uskir d x0 afrdis-tiggt n uzbg.

S usnfl ɣ tanfalit y s y, ar nttafa:

(xy)n=(x+(y))n=k=0n(nk)xnk(y)k

Imdyatn:

n=2,(x+y)2=x2+2xy+y2,(xy)2=x22xy+y2,n=3,(x+y)3=x3+3x2y+3xy2+y3,(xy)3=x33x2y+3xy2y3,n=4,(x+y)4=x4+4x3y+6x2y2+4xy3+y4,n=7,(x+y)7=x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7.

Amdya

Ha asnful ad ittuyskar i id n mẓẓiynin:

(x+y)0=1,(x+y)1=x+y,(x+y)2=x2+2xy+y2,(x+y)3=x3+3x2y+3xy2+y3,(x+y)4=x4+4x3y+6x2y2+4xy3+y4,(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5,(x+y)6=x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6,(x+y)7=x7+7x6y+21x5y2+35x4y3+35x3y4+21x2y5+7xy6+y7,(x+y)8=x8+8x7y+28x6y2+56x5y3+70x4y4+56x3y5+28x2y6+8xy7+y8.

Tummla

Nẓḍar ad nsml tanfalit ad s tinawt n ullus.[3]

Tummla nɣ taflalit igan tamakazt uggar[4] ar tswurri s usfki n imuskirn isnfal (nk) mas iga umḍan n tifulin n k ifrdisn ɣ yat tagrumma nna ɣ illa n ifrdisn. Kudnna nsbuɣla tanfalit

(x+y)n=(x+y)(x+y)(x+y)(n twal)

ar nttafa yat timrnit n iynfuln s talɣa n xjyk ma ɣ j d k ar mmaln s trtib ad nit uṭṭun n twal nna ɣ nxtar xy lliɣ tn nkka art nsbuɣlu. Illa darnɣ s bzziz j=nk, acku kraygat twal ur ar gis ntxtar y, ar ntxtar x. S tɣarast yaḍna, maḥd darɣ (nk) n tɣarasin ur mrwasnin n lixtiyyar n k twal atig n yn tinfulin (x+y) isggt ddaw as, aynful xnkyk ixṣṣa ad ibayn ɣ usbuɣlu d umuskir (nk).

Tummla s ullus

Ar nsiggil ad nml masd tanfalit ad n (a+b)n=k=0n(nk)akbnk tṣḥa s tinawt n ullus n d {a,b}𝔸2 s ab=ba (maɣ 𝔸 iga uzbg mknna ira igt)

Tazwart

n=0

(a+b)0=1

(00)a0b00=1

Tazwart n tanfalit tṣḥa

Taɣaldt

Rad nɣal mas tanfalit ad tṣḥa ar twala n n

(a+b)n+1=(a+b).(a+b)n

(a+b).k=0n(nk)akbnk

(k=0n(nk)ak+1bnk)+(k=0n(nk)akbn+1k)

Ad nsrs p=k+1

(p=1n+1(np1)apbn+1p)+(k=0n(nk)akbn+1k)

(k=1n((nk1)+(nk))akbn+1k)+(n0)a0bn+1+(nn)an+1b0

(k=1n(n+1k)akbn+1k)+(n+10)a0bn+1+(n+1n+1)an+1b0

(k=0n+1(n+1k)akbn+1k)

Amsgra

S tifadiwin lli nfka i a d b, tanfalit (a+b)n=k=0n(nk)akbnk tṣḥa i n .

Asmata

Nẓḍar ad nals i usbuɣlu s ullus fad ad nml tanfalit n Laybniz i tazllumt tis-n n kra n ufaris.

Taɣarast tamsuddst n tawlawalt ad aɣ yujjan ad nskr asmata n tulut agtful

(X+Y)n=k=0n(nk)XnkYk

s

i=1n(X+Yi)=k=0nσk(Y1,,Yn)Xnk,

maɣ id σk nɛna sisn igtfuln ujjuṛn ifrdasn.

Nẓḍar ula ad nskr asmata n tanfalit ad s timrniyin n m irman ismlaln lan yat tuẓḍurt tummidt n

(i=1mxi)n=|k|=n(nk)i=1mxikid s imksanen ur gin ummidn nɣ gan ummidn izdrn.

Ẓṛ uggar

Isaɣuln

  1. S ṣṣaḥt, tanfalit ad tettussan yad zɣ tasut tis-X, slawann akk dar id bu-tusnakt ihindiyn, iɛrabn d ifarisiyn (Al-Karaji) d ɣ tasut tis-XIII, amusnak acinwi Yang Hui imlatt. Ɣ 1665, Nyuṭun iskr as asmata nns s tuẓḍurin ur gin ummidn.
  2. Tafada ad tga ḍaṛuṛiyya, d tga tagdazalt i tidt n tanfalit i n = 2.
  3. Tummla n Asnful n Nyuṭun : s tinawt n ullus - AVIDYU YUTUB
  4. Tummla n Asnful n Nyuṭun : s tinawt n uddun - AVIDYU YUTUB


== Isaɣuln


==


Tinidlisn d izdayn

(en) J. L. Coolidge, « The Story of the Binomial Theorem », Amer. Math. Monthly, vol. 56, no 3,‎ 1949, p. 147-157 (JSTOR 2305028, Ɣr ɣ wanṭirnit)

(en) Graham, Ronald; Knuth, Donald; Patashnik, Oren (1994). "(5) Binomial Coefficients". Concrete Mathematics (2nd ed.). Addison Wesley. pp. 153–256. ISBN 978-0-201-55802-9. OCLC 17649857.

(en) Bag, Amulya Kumar (1966). "Binomial theorem in ancient India". Indian J. History Sci. 1 (1): 68–74.

(en) Solomentsev, E.D. (2001) [1994], " Newton binomial ", , Encyclopedia of Mathematics, EMS Press

Amawal

Tiguriwin

  • Tanfalit = formule
  • Asnful = binome
  • Amusnak = mathematicien
  • Asbuɣlu = developpement
  • Taẓḍurt = puissance
  • Azbg = anneau
  • Afrdis = element
  • Amḍan = nombre
  • Ilaw = reel
  • Asmlal = complexe
  • Agtful = polynome
  • Isiruw = matrice
  • Amkkuẓ = carre
  • Tasunflt = commutativite
  • Tulut = identite
  • Ummid = entier
  • Agaman = naturel
  • Amuskir = coeficient
  • Uskir = factorielle
  • Afrdis-tiggt = element unite
  • Tinawt = énoncé
  • Ullus = recurence
  • Asfki = definion
  • Amakaz = intuitif
  • Tafult = partie
  • Tagrumma = ensemble
  • Timrnit = somme
  • Iynfuln = monômes
  • Tazllumt = derive
  • Tamsuddst = derive
  • Awlawal = variant
  • Agtful = polynimiale
  • Ujjuṛ = symetrique
  • Afrdas = elementaire
  • Irm = terme
  • Amksan = exposant
  • Uzdir = negatif

Imawaln

Amawal umniḍ DGLAi n Asinag Agldan n Tussna Tamaziɣt, s kraḍ tutlayin (tamaziɣt tatrart tamɣribit - tafransist - taɛrabt) [Alink nns]

Amawal Tafsut n tusnakt - MCB Alger, Tiwi Uzzu s sin tutlayin (tamaziɣt taqbaylit - tafransist) [Alink nns]Talɣa:Aggur:Tusnakt/Tin imgradn